iTRAQ-Based Proteomic Analysis of Sublethally Injured Escherichia coli O157:H7 Cells Induced by High Pressure Carbon Dioxide

نویسندگان

  • Xiufang Bi
  • Yongtao Wang
  • Xiaosong Hu
  • Xiaojun Liao
چکیده

High pressure carbon dioxide (HPCD) could cause sublethally injured cells (SICs), which may cause food poisoning and spoilage during food storage and limit its application. Therefore, the formation of SICs of Escherichia coli O157:H7 was investigated by isobaric tag for relative and absolute quantification (iTRAQ) proteomic methods in this study for better controlling the SICs induced by HPCD. A total of 2,446 proteins was identified by iTRAQ, of which 93 and 29 were significantly differentially expressed in the SICs compared with live control cells (CKL) and dead control cells (CKD), respectively. Among the 93 differentially expressed proteins (DEP) in the SICs compared with CKL, 65 proteins showed down-regulation and 28 showed up-regulation. According to the comprehensive proteome coverage analysis, the SICs survived under HPCD by reducing carbohydrate decomposing, lipid transport and metabolism, amino acid transport and metabolism, transcription and translation, DNA replication and repair. Besides, the SICs showed stress response, DNA damage response and an increased carbohydrate transport, peptidoglycan synthesis and disulfide bond formation to HPCD. Among the 29 DEP in the SICs compared with CKD, 12 proteins showed down-regulation and 17 showed up-regulation. According to the comprehensive proteome coverage analysis, the SICs survived under HPCD by accumulation of cell protective agents like carbohydrates and amino acids, and decreasing transcription and translation activities. Results showed that the formation of the SICs with low metabolic activity and high survival ability was a survival strategy for E. coli O157:H7 against HPCD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2

UNLABELLED The formation of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by high-pressure CO2 (HPCD) was investigated using RNA sequencing (RNA-Seq) transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) proteomic methods. The analyses revealed that 97 genes and 56 proteins were significantly changed upon VBNC state entry. Genes and proteins related ...

متن کامل

Modified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect

Enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifid...

متن کامل

Evaluation of a multiplex selective enrichment broth SEL for simultaneous detection of injured Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes

Although many rapid and high throughput molecular methods have been developed in the recent years for the multiplex detection of foodborne pathogens, the simultaneous recovery and enrichment of sublethally injured cells is still a problem that needs to be considered. Combined with previous established multiplex real-time PCR assay, the capability of simultaneous recovery and enrichment of suble...

متن کامل

Biology of Escherichia coli O157:H7 in human health and food safety with emphasis on sublethal injury and detection

Approximately 200 foodborne illnesses are recognized worldwide, but enterohemorrhagic Escherichia coli (EHEC) is considered among the most important bacterial pathogens to date. EHEC was recognized as a human pathogen in 1982, and still remains important to clinicians, researchers, and the general public. If ingested, E. coli O157:H7 can initiate a toxicoinfection in the host, giving rise to ab...

متن کامل

Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior

Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017